Xenopus tropicalis egg extracts provide insight into scaling of the mitotic spindle

نویسندگان

  • Katherine S. Brown
  • Michael D. Blower
  • Thomas J. Maresca
  • Timothy C. Grammer
  • Richard M. Harland
  • Rebecca Heald
چکیده

The African clawed frog Xenopus laevis has been instrumental to investigations of both development and cell biology, but the utility of this model organism for genetic and proteomic studies is limited by its long generation time and unsequenced pseudotetraploid genome. Xenopus tropicalis, which is a small, faster-breeding relative of X. laevis, has recently been adopted for research in developmental genetics and functional genomics, and has been chosen for genome sequencing. We show that X. tropicalis egg extracts reconstitute the fundamental cell cycle events of nuclear formation and bipolar spindle assembly around exogenously added sperm nuclei. Interestingly, X. tropicalis spindles were approximately 30% shorter than X. laevis spindles, and mixing experiments revealed a dynamic, dose-dependent regulation of spindle size by cytoplasmic factors. Measurements of microtubule dynamics revealed that microtubules polymerized slower in X. tropicalis extracts compared to X. laevis, but that this difference is unlikely to account for differences in spindle size. Thus, in addition to expanding the range of developmental and cell biological experiments, the use of X. tropicalis provides novel insight into the complex mechanisms that govern spindle morphogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mitotic chromosome size scaling in Xenopus.

As rapid divisions without growth generate progressively smaller cells within an embryo, mitotic chromosomes must also decrease in size to permit their proper segregation, but this scaling phenomenon is poorly understood. We demonstrated previously that nuclear and spindle size scale between egg extracts of the related frog species Xenopus tropicalis and Xenopus laevis, but show here that dimen...

متن کامل

Jcb_201401014 1..9

The function of the spindle to accurately segregate chromosomes during cell division is universal among eukaryotes. A common feature of metaphase spindles is their bipolar structure, with microtubule (MT) minus ends pointing toward the poles and MT plus ends toward the center, with a subset of them connecting to chromosomes at the kinetochores. However, wide variation in spindle assembly, size,...

متن کامل

Changes in cytoplasmic volume are sufficient to drive spindle scaling.

The mitotic spindle must function in cell types that vary greatly in size, and its dimensions scale with the rapid, reductive cell divisions that accompany early stages of development. The mechanism responsible for this scaling is unclear, because uncoupling cell size from a developmental or cellular context has proven experimentally challenging. We combined microfluidic technology with Xenopus...

متن کامل

Mos Mediates the Mitotic Activation of p42 MAPK in Xenopus Egg Extracts

The ERK1/ERK2 MAP kinases (MAPKs) are transiently activated during mitosis, and MAPK activation has been implicated in the spindle assembly checkpoint and in establishing the timing of an unperturbed mitosis. The MAPK activator MEK1 is required for mitotic activation of p42 MAPK in Xenopus egg extracts; however, the identity of the kinase that activates MEK1 is unknown. Here we have partially p...

متن کامل

TPX2 levels modulate meiotic spindle size and architecture in Xenopus egg extracts

The spindle segregates chromosomes in dividing eukaryotic cells, and its assembly pathway and morphology vary across organisms and cell types. We investigated mechanisms underlying differences between meiotic spindles formed in egg extracts of two frog species. Small Xenopus tropicalis spindles resisted inhibition of two factors essential for assembly of the larger Xenopus laevis spindles: RanG...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 176  شماره 

صفحات  -

تاریخ انتشار 2007